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a b s t r a c t 

As there is no vaccination and proper medicine for treatment, the recent pandemic caused by COVID- 

19 has drawn attention to the strategies of quarantine and other governmental measures, like lockdown, 

media coverage on social isolation, and improvement of public hygiene, etc to control the disease. The 

mathematical model can help when these intervention measures are the best strategies for disease con- 

trol as well as how they might affect the disease dynamics. Motivated by this, in this article, we have 

formulated a mathematical model introducing a quarantine class and governmental intervention mea- 

sures to mitigate disease transmission. We study a thorough dynamical behavior of the model in terms 

of the basic reproduction number. Further, we perform the sensitivity analysis of the essential reproduc- 

tion number and found that reducing the contact of exposed and susceptible humans is the most critical 

factor in achieving disease control. To lessen the infected individuals as well as to minimize the cost 

of implementing government control measures, we formulate an optimal control problem, and optimal 

control is determined. Finally, we forecast a short-term trend of COVID-19 for the three highly affected 

states, Maharashtra, Delhi, and Tamil Nadu, in India, and it suggests that the first two states need further 

monitoring of control measures to reduce the contact of exposed and susceptible humans. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The recent pandemic, which is commonly known as COVID-19,

s an infectious disease caused by the virus, severe acute respira-

ory syndrome coronavirus 2 (SARS-CoV-2). In late December 2019,

he disease COVID-19 was first identified in Wuhan, the capital

ubei province, China, and causing the first pandemic of this cen-

ury. Since the start of the year 2020, the infectious disease COVID-

9 has started to spread globally and resulting in almost three mil-

ion positive cases till today (till 27th April, 2020 there with about

ne million closed cases having a 20% death rate). As we under-

tand, the disease COVID-19 has become a pandemic due to sev-

ral reasons. Some of them are (i) unavailability of both suitable

accine and exact medicine, (ii) high disease transmission rate,
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nd (iii) the precise nature of the virus SARS-CoV-2 being still un-

nown. As many as 210 countries and territories around the globe

ave been suffering from COVID-19 today [see [16] ]. 

The primary step taken by most of the governmental agencies

o control COVID-19 is the implementation of lockdown to main-

ain social distance. This procedure is an excellent measure to con-

rol the spreading of the disease. Still, from an economic point

f view, the complete lockdown may be the cause of a signifi-

ant financial crisis for the near future. In particular, lockdown in

igh dense countries may reduce the disease transmission rate, al-

hough complete control may not be achievable. Hence to alive the

conomic status of a country, a full lockdown for an indefinite pe-

iod is not desirable at all in any circumstances. Therefore there

hould be a suitable balance between the two different character-

stics of governmental policies complete lockdown and healthy free

onditions. 

Therefore, in the present scenario, a qualitative analysis of

OVID-19 is more significant compare to quantitative analysis.

ence a suitable mathematical model would not only able to
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1  
represent the whole disease system but also the study of the

model would undoubtedly derive the precise nature of the dis-

ease. It may forecast the behavioral aspect of the disease shortly.

Although the primitive mathematical models on theoretical epi-

demiology (see Bernoulli [1] , Hamer [13] , Ross [40] . Kermack and

McKendric [24] , etc) look quite simple, still, from a new perspec-

tive, those works are the major works on mathematical epidemiol-

ogy. With the advancement of computational tools and software,

we can develop a complex mathematical model and analyze it

thoroughly in a scientific manner. In the history of literature, we

see that many model-based studies have successfully achieved the

global dynamics of the corresponding infectious disease (see the

references Keeling and Rohani [23] , Wang and Zhao [41] , Buonomo

et al. [3] , Zhou et al. [43] , Jana et al. [18,20] , Li et al. [29] , Zegarra

and Hernandez [42] etc). 

According to the information received, it may take around one

week to two weeks for the exposure of symptoms of COVID-19 of

an infected person, although during this period, that person able to

infect other susceptible persons. However, there may be some in-

fected persons whose infection is so mild that the person would

recover due to innate immunity even before the hospitalization.

Thus in this article, by the term ’infected’ person, we will mean

those persons who are hospitalized. Further, we assume that the

medical personals assisting COVID-19 positive hospitalized individ-

uals have taken necessary protective items. Thus to keep simplic-

ity, we believe that only exposed persons and asymptomatic in-

fected persons can spread the disease. Still, the infected persons

who are hospitalized in due course are not spreading the virus. Al-

though the effect of COVID-19 started not more than six months

ago, some significant works have already been done or are un-

dergoing to expose COVID-19 with the help of suitable mathemat-

ical models. Kucharski et al. [26] have proposed a mathematical

model-based analysis of COVID-19, where the authors have consid-

ered all the positive cases of Wuhan, China, till 5th March 2020.

In another recent work, Ndairou et al. [35] have presented an au-

tonomous system of mathematical model to study the spread of

COVID-19 in the Wuhan city, China. Using mathematical modeling,

Prem et al. [38] have analyzed the controlling status of COVID-19

of Wuhan city. Hellewell et al. [15] have described the effective

procedure of COVID-19 disease using isolation. In another work,

Mizumoto and Chowell [33] have studied the transmission dynam-

ics of COVID-19 in the international conveyance, Diamond Princess

Cruises Ship. The basic reproduction number is an important pa-

rameter to analyze the nature of an infectious disease. In their

work, Liu et al. [30] have investigated the possible numerical value

of the basic reproduction number of COVID-19. In a recent article,

Fanelli and Piazza [7] have analyzed and predicted the nature of

COVID-19 in three most affected countries till March 2020 with the

help of mathematical modelling. Ribeiro et al. [39] have used some

stochastic based regression models to forecast the phenomena in

as many as ten most affected states of Brazil. In other recent work,

Chakraborty and Ghosh [4] have considered a hybrid ARIMA-WBF

model to forecast various COVID-19 affected countries throughout

the globe. 

Since the nature and destruction of COVID-19 depends on vari-

ous parameters (namely personal immunity, history of visiting into

a COVID-19 pandemic country, maintaining the required hygiene,

etc.) of the affected system, using a single model we cannot de-

scribe the whole disease system throughout the globe. Addition of

detail and complexity can make models more accurate but this also

complicates their mathematics. However, even this kind of simple

model is very helpful when formal vaccination or proper treatment

control is not available. Motivated by this, in the present paper, we

propose a mathematical model introducing a quarantine class and

governmental intervention measures like lockdown, media cover-

R  
ge on social distancing, and improvement of public hygiene, etc

o mitigate disease transmission. The main purpose of this work is

o explore the role of quarantine and the governmental interven-

ion strategies on COVID-19 control and elimination. We study a

horough dynamical behavior of the model in terms of the basic

eproduction number. Further, we perform the sensitivity analysis

f the essential reproduction number and found that reducing the

ontact of exposed and susceptible humans is the most critical fac-

or in achieving disease control. To lessen the infected individuals

s well as to minimize the cost of implementing government con-

rol measures, we formulate an optimal control problem, and op-

imal control is determined. Finally, we predict a short-term trend

f COVID-19 for the three most affected states, Maharashtra, Delhi,

nd Tamil Nadu in India, and it suggests that the first two states

eed further monitoring of control measures to reduce the contact

f exposed and susceptible humans. 

The rest portion of this paper has been organized in the follow-

ng way: In Section 2 , we describe the theoretical analysis of the

rticle, which includes the basic reproduction number, existence,

nd asymptotic stability criteria of the two equilibria, namely

isease-free and endemic equilibrium point. In Section 3 , we for-

ulate an optimal control problem and solve the problem analyt-

cally. In Section 4 , we provide some numerical examples to illus-

rate the theoretical counterparts. Next, in Section 5 , we consider

eal-world examples on COVID-19 of three most COVID-19 affected

tates in India and derive some short term forecasting based on

he proposed model. In the final section, we provide a thorough

iscussion of our article. 

. Model formulation 

In this section, we formulate a mathematical model on COVID-

9 based on some realistic assumptions. At any time instant t ,

he human populations are subdivided into five time-dependent

lasses, namely Susceptible S ( t ), Exposed E ( t ), Hospitalized infected

 ( t ), Quarantine Q ( t ) and Recovered or Removed R ( t ). Based on

hose five state variables, we aim to form an autonomous system

sing first-order differential equations. Let A be the constant re-

ruitment rate to the susceptible population, and β be the disease

ransmission rate. However the disease transmission from vulner-

ble to infected persons (here the class E ) depends on several pa-

ameters, namely, precautions (use of face mask, social distancing,

ot rubbing face and nose using hand, etc.) and hygienic environ-

ent (use of soap and sanitizer, hand washing, cleaning, etc.) taken

y both susceptible as well as infected persons. Since here, we

ave assumed that the virus of COVID-19 is spreading when a vul-

erable person comes into contact with an exposed person; there-

ore we think that ρ1 (0 < ρ1 < 1) portion of susceptible human

ould maintain proper precaution measure and ρ2 (0 < ρ2 < 1)

ortion of the exposed class would take proper precaution mea-

ure for disease transmission (i.e., use of face mask, social distanc-

ng and implementing hygiene). Therefore the disease can only be

ransmitted to the (1 − ρ1 ) S portion of susceptible individuals due

o the contact of (1 − ρ2 ) E portion of exposed individuals with a

i-linear disease transmission rate β . We know that a person is

hether infected by the SARS-CoV-2 virus or not can be clinically

etected using RT-PCR examination and a person with negative re-

ults in the RT-PCR test may still be COVID-19 positive as it may

ake some days (from 7 to 21 days) to express infection. Therefore,

he portion with positive COVID-19 of the class of population E is

onsidered as infected, and they are hospitalized. Let α and b 2 be

he portions of the exposed class goes to the infected class and

uarantine class, respectively. It should be noted that 0 < α + b 2 <

 since it would take quite a long time to get the output of the

T-PCR test, and sometimes it requires more than one RT-PCR
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nalysis for a single person for confirmation of COVID-19. Let

mong the quarantine classes of populations, cQ portion of com-

unities move to infected level, and the b 1 Q part would become

usceptible to the disease after the quarantine period. Let η and σ
e respectively recovery rate of the hospitalized infected popula-

ions I and exposed class E . Let d be the natural death rate, which

s common to all classes of communities and δ be the COVID-

9 induced death rate. Also, it is statistically observed a person

nce recovered from the disease COVID-19 has very little chance

o become infected again for the same disease. Hence, we as-

ume that no portion of the recovered population moves to the

usceptible class back. Also, in the formulation of a mathematical

odel, we understand that the people of the hospitalized infected

lass (i.e., I ( t )) would not be spreading the disease or spreading

 negligible amount of disease since they are kept completely iso-

ated from the susceptible individuals. However, to control the pan-

emic COVID-19, suitable governmental measures (like complete

r semi lockdown, rationing system, continue media coverage on

ocial isolation and improvement of public hygiene, home deliv-

ries of essential commodities, to make an alternate source of in-

ome for job-losers during the lockdown, etc.) have been imple-

ented by the various governmental and non-governmental agen-

ies. Thus this policy may be considered as one of the effective

ontrol tools, and mainly the susceptible population of COVID-19

ases would be benefited due to this policy. Mathematically we

epresent this policy by the parameter M and let this policy be

mplemented at a rate p . Therefore due to the implementation of

his policy, the portion, pSM moves from susceptible to the recov-

red or removed class ( R ( t )). It should be noted that usually, the

arameter M should be time-dependent as for the optimum re-

ult, the policy should be applied according to the necessity of

he situation and keeping a proper balance between two differ-

nt states, namely lockdown and complete free state. However,

n the qualitative analysis of this model, we assume the param-

ter M as time-independent, but in formulating an optimal con-

rol problem to keep the infected individuals at the minimum

evel, M is assumed as a time-dependent control M ( t ), where in-

eed 0 ≤ M ( t ) ≤ 1. Based on the above assumptions, we present

 schematic diagram of the proposed COVID-19 system in Fig. 1 .

urther, based on the above-stated assumptions and the flow dia-

ram of COVID-19, we formulate an autonomous a dynamical sys-

em consisting of five first-order differential equations shown as

elow: 

On the basis of above stated assumptions and the flow dia-

ram of COVID-19, we formulated an autonomous dynamical sys-

em consisting of five first order differential equations shown as
Fig. 1. Flow diagram of disease transmission. 
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elow: 

dS 

dt 
= A − β(1 − ρ1 )(1 − ρ2 ) SE + b 1 Q − dS − pSM, 

dE 

dt 
= β(1 − ρ1 )(1 − ρ2 ) SE − b 2 E − αE − σE − dE, 

dQ 

dt 
= b 2 E − b 1 Q − cQ − dQ, 

dI 

dt 
= αE + cQ − (η + d + δ) I, 

dR 

dt 
= ηI + σE − dR + pSM. 

(1) 

The initial condition of the system (1) are S (0) ≥ 0, E (0) ≥ 0,

 (0) ≥ 0, I (0) ≥ 0, R (0) ≥ 0. 

. Analysis of the system for fixed control 

In this section we assume the fixed value for control parameter

 . Here we mainly study the uniformly boundedness of the so-

utions and subsequently the basic reproduction number, different

quilibria and their stability criteria, sensitivity etc. 

.1. Boundedness of the system 

Here we examine the boundedness property of the system (1) . 

heorem 3.1. The solutions of the system (1) are uniformly bounded.

roof. We assume that X = S + E + Q + I + R. 

Therefore dX 
dt 

= 

dS 
dt 

+ 

dE 
dt 

+ 

dQ 
dt 

+ 

dI 
dt 

+ 

dR 
dt 

, 

dX 

dt 
+ δI = A − dX 

.e., 
dX 

dt 
+ d X ≤ A . 

ntegrating the above inequality and by applying the theorem of

ifferential equation due to Birkhoff and Rota [2] , we get 

 ≤ A 

d + pM 

[
1 − e −dt 

]
+ X 0 e 

−dt . 

Now for t → ∞ , 

 < X ≤ A 

d + pM 

. 

Hence all the solutions of (1) that are initiating in { R 

5 + } are con-

ned in the region 

 X ∈ R 

5 
+ : 0 ≤ X (S, E, Q, I, R ) < 

A 

d + pM 

+ ε} 
or any ε > 0 and for t → ∞ . Hence the theorem. �

.2. Basic reproduction number 

In any epidemic model, the basic reproduction number is the

ost important epidemiological parameter for determining the na-

ure of a disease. Generally, it is denoted by R 0 and is defined as

he “number of secondary infected individuals caused by single in-

ected individuals in the whole time interval” (see, van den Driess-

he and Watmough [6] ). Therefore the dimensionless quantity R 0 
efers as the expectation of the spreading disease. 

In literature, several techniques are available to evaluate R 0 for

n epidemic spread. In our present research article we use the next
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generation matrix approach [5,9,22] . Now the classes which are di-

rectly involved for spread of disease is only E, Q, I . Therefore from

system (1) we have 

dE 

dt 
= β(1 − ρ1 )(1 − ρ2 ) SE − b 2 E − αE − σE − dE 

dQ 

dt 
= b 2 E − b 1 Q − cQ − dQ 

dI 

dt 
= αE + cQ − (η + d + δ) I. 

(2)

The above system can be written as dy 
dt 

= 	(y ) − 
(y ) ,

where y = 

( 

E 

Q 

I 

) 

, 	(y ) = 

( 

β(1 − ρ1 )(1 − ρ2 ) SE 

0 

0 

) 

, 
(y ) =
⎛ 

⎜ ⎝ 

(b 2 + α + σ + d) E 

(b 1 + c + d) Q − b 2 E 

(η + d + δ) I − αE − cQ 

⎞ 

⎟ ⎠ 

. 

It is clear from the system (1) that E 0 ( 
A 

d+ pM 

, 0 , 0 , 0 , pMA 
d (d + pM) 

)

is a disease free equilibrium. Now the Jacobian matrix of 	

and 
 at the disease free equilibrium are respectively given by,

F = J(	| E 0 ) = 

( 

β(1 − ρ1 )(1 − ρ2 ) S 
0 0 0 

0 0 0 

0 0 0 

) 

and V = J(
| E 0 ) =⎛ 

⎜ ⎝ 

b 2 + α + σ + d 0 0 

−b 2 b 1 + c + d 0 

−α −c η + d + δ

⎞ 

⎟ ⎠ 

. 

The basic reproduction number ( R 0 ) is the spectral radius of the

of the matrix (F V −1 ) and for the present model it is given by 

R 0 = 

Aβ( 1 − ρ1 ) ( 1 − ρ2 ) 

( d + pM ) ( b 2 + α + σ + d ) 
. (3)

3.3. Equilibria 

The system has two possible equilibria. One is disease

free equilibrium point, where infection vanishes from the sys-

tem. It is given by E 0 ( S 
0 , 0, 0, 0, R 0 ), where S 0 = 

A 
d+ pM 

,

R 0 = 

ApM 

d (d + pM ) 
. The other equilibrium point is E 1 ( S 

∗, E ∗, Q 

∗,

I ∗, R ∗), where infection is always present in the system is

called endemic equilibria, where S ∗ = 

b 2 + α+ σ+ d 
β(1 −ρ1 )(1 −ρ2 ) 

, E ∗ = ( b 1 + c +
d) 

Aβ(1 −ρ1 )(1 −ρ2 ) −(d+ pM)(b 2 + α+ σ+ d) 
β(1 −ρ1 )(1 −ρ2 ) { b 2 (c+ d)+(α+ σ+ d)(b 1 + c+ d) } , 
Q 

∗ = b 2 
Aβ(1 −ρ1 )(1 −ρ2 ) −(d+ pM)(b 2 + α+ σ+ d) 

β(1 −ρ1 )(1 −ρ2 ) { b 2 (c+ d)+(α+ σ+ d)(b 1 + c+ d) } , 
I ∗ = 

{ α(b 1 + c+ d)+ b 2 c}{ Aβ(1 −ρ1 )(1 −ρ2 ) −(d+ pM)(b 2 + α+ σ+ d) } 
β(1 −ρ1 )(1 −ρ2 ) { b 2 (c+ d)+(α+ σ+ d)(b 1 + c+ d) } (η+ d+ δ) 

, R ∗ =
ηI ∗+ σE ∗+ pMS ∗

d 
. 

Note It is observed from the expression of the above two equi-

librium point is that the disease free equilibrium E 0 is always fea-

sible but the endemic equilibrium E 1 is feasible if R 0 > 1. 

3.4. Stability analysis 

In the present section we investigate the local asymptotic sta-

bility criteria of the different equilibria. 

Theorem 3.2. The disease free equilibrium E 0 is locally asymptotically

stable if R 0 < 1 and it is unstable if R 0 > 1. 

Proof. The Jacobian matrix at the disease free equilibrium of the
system (1) is given by 

J = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−(d + pM) −β(1 − ρ1 )(1 − ρ2 ) S 
0 b 1 0 0 

0 β(1 −ρ1 )(1 −ρ2 ) S 
0 − (b 2 + α + σ + d) 0 0 0 

0 b 2 −(b 1 + c + d) 0 0 

0 α c −(η + d + δ) 0 

pM σ 0 η −d 

⎞ 

⎟ ⎟ ⎟ ⎠ 
T  
Now the characteristic equation of the system (1) at its disease

ree equilibrium is given by 

(λ + d)(λ + d + pM)(λ + b 1 + c + d)(λ + η + d + δ) 

( λ + (b 2 + α + σ + d)(1 − R 0 ) ) = 0 (4)

Clearly all the eigen value of the Jacobian matrix are negative

f and only if R 0 < 1. Hence the system is locally asymptotically

table if R 0 < 1 and it is unstable if R 0 > 1. Hence the theorem. �

Note Here we see that the disease free equilibrium E 0 losses its

tability when the R 0 increases to its value greater than 1. So, we

ay conclude that at R 0 the system (1) passes through a bifurca-

ion around its disease free equilibrium which are discussed in the

ext theorem.. 

heorem 3.3. The system (1) passes through a transcritical bifurca-

ion around its disease free equilibrium when R 0 = 1 . 

roof. From the above analysis, it has been observed that when

 0 < 1 between the two equilibria, only the disease free equi-

ibrium exists and locally asymptotically stable where as R 0 > 1

s the threshold condition for both existence and asymptotic sta-

ility criteria of the endemic equilibrium point although the dis-

ase free equilibrium reduces to unstable nature at the threshold

 0 > 1. Hence we may conclude that there is change of feasibility

s well as stability occurs at R 0 = 1 . Following the articles Guken-

eimer and Holmes [12] , Kar and Jana [21] , Jana et al. [19] etc, it is

oncluded that the system undergoes a transcritical bifurcation at

 0 = 1 and in Fig. 4 , we represent graphically the phenomenon of

ranscritical bifurcation. �

Now we study the local asymptotic stability of the endemic

quilibrium E 1 . 

heorem 3.4. The Endemic equilibrium E 1 is locally asymptotically

table for R 0 > 1. 

roof. The jacobian matrix for the system (1) is given by 

 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

a 11 −β(1 − ρ1 )(1 − ρ2 ) S 
∗ b 1 0 0 

β(1 − ρ1 )(1 − ρ2 ) E 
∗ a 22 0 0 0 

0 b 2 −(b 1 + c + d) 0 0 

0 α c −(η + d + δ) 0 

pM σ 0 η −d 

⎞ 

⎟ ⎟ ⎟ ⎠ 

where, a 11 = −β(1 − ρ1 )(1 − ρ2 ) E 
∗ − (d + pM) , a 22 = β(1 −

1 )(1 − ρ2 ) S 
∗ − (b 2 + α + σ + d) . The characteristic equation of

he system (1) around its endemic equilibrium E 2 is 

(λ + d)(λ + η + d + δ)(λ3 + C 1 λ
2 + C 2 λ + C 3 ) = 0 (5)

here C 1 = 2 d + b 1 + c + pM + β(1 − ρ1 )(1 − ρ2 ) , 

C 2 = ((b 1 + c + d)(d + pM + β(1 − ρ1 )(1 − ρ2 ) E 
∗) + (b 2 + α + 

+ d) β(1 − ρ1 )(1 − ρ2 )) , 

C 3 = { (b 2 + α + σ + d)(b 1 + c + d) − b 1 b 2 } β(1 − ρ1 )(1 − ρ2 ) E 
∗. 

It is clear from the equation (5) that first two roots are nega-

ive real numbers and remaining roots are the roots of the cubic

olynomial. It is also observe that here C 1 , C 2 , C 3 and C 1 C 2 − C 3 all

re positive for any parametric value. Hence following the Routh-

urwitz criterion we may conclude that the system (1) is locally

symptotically stable around its endemic equilibrium E 1 . �

. Optimal control problem 

Here we focus on the time varying control M ( t ), which repre-

ents the awareness due to media coverage. Now it is very impor-

ant to find out a strategy which minimizes the number of infected

ersons as well as the associated cost. In this regard, the optimal

ontrol theory is a very powerful tool to figure out such policy.

herefore we consider the optimal control problem to minimize
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he objective functional. Following [27,31] , we construct the objec-

ive functional as follows: 

 = 

∫ t f 

0 
[ c 1 I(t) + c 2 M(t) ] dt. (6) 

ubject to the proposed model (1) . The parameters c 1 and c 2 cor-

esponds as the weight constraints for the infected population and

he control respectively. Here the objective functional is linear in

he control with bounded states. Therefore it can be be showed by

sing standard results that an optimal control and corresponding

ptimal states exist [8] . Now we need to find out the value of the

ptimal control M 

∗( t ) such that 

 ( M 

∗(t) ) = min 

M∈ �
J(M) 

here � = { M(t) : 0 ≤ a ≤ M(t) ≤ b < 1 , 0 ≤ t ≤ t f , M(t) is

ebesgue measurable } . 
Here we use the Pontryagin’s Maximum Principle [8,28,37] to

erive the necessary conditions for our optimal control and corre-

ponding states. The Lagrangian is given by 

 ( I, M ) = c 1 I(t) + c 2 M(t) (7)

The Hamiltonian is defined as follows 

 ( I, M, λ1 , λ2 , λ3 , λ4 , λ5 ) = L ( I, M ) + λ1 (t) 
dS 

dt 
+ λ2 (t) 

dE 

dt 

+ λ3 (t) 
dQ 

dt 
+ λ4 (t) 

dI 

dt 
+ λ5 (t) 

dR 

dt 
. (8) 

For the optimal control M 

∗( t ), there exist adjoint variables, cor-

esponding to the states S, E, Q, I ans R such that: 

˙ 
1 ( t ) = −∂H 

∂S 
= ( β( 1 − ρ1 ) ( 1 − ρ2 ) E + d + pM ) λ1 

−β( 1 − ρ1 ) ( 1 − ρ2 ) Eλ2 − λ5 pM 

˙ 
2 ( t ) = −∂H 

∂E 
= β( 1 − ρ1 ) ( 1 − ρ2 ) Sλ1 

+ ( b 2 + α + σ + d − β( 1 − ρ1 ) ( 1 − ρ2 ) S ) λ2 

−b 2 λ3 − αλ4 − σλ5 

˙ 
3 ( t ) = −∂H 

∂Q 

= ( b 1 + c + d ) λ3 − λ1 b 1 − cλ4 

˙ 
4 ( t ) = −∂H 

∂ I 
= ( η + d + δ) λ4 − c 1 − ηλ5 

˙ 
5 ( t ) = −∂H 

∂R 

= dλ5 (9) 

here the adjoint variables satisfy the transversality conditions 

1 (t f ) = 0 , λ2 (t f ) = 0 , λ3 (t f ) = 0 , λ4 (t f ) = 0 , λ5 (t f ) = 0 . (10)

We minimize the Hamiltonian with respect to the control vari-

ble M 

∗( t ). Now, since the Hamiltonian is linear in the control pa-

ameter, so we consider if the optimal control is bang-bang or sin-

ular. First we find the switching function as 

(t) = 

∂H 

∂M 

= c 2 + (λ5 − λ1 ) pS. (11)

Now the singular control occurs when the switching function

anishes on non-trivial interval of time. Also the optimal control

ould take its upper bound or its lower bound according as ∂H 
∂M 

<

 or > 0. 

Now to investigate the singular case, we assume that ∂H 
∂M 

= 0

n some non-trivial interval. In this case we calculate d 
dt 

(
∂H 
∂M 

)
= 0 . 

After some simplifications of the time derivative of ∂H 
∂M 

, we ob-

ain 

 = 

d 

dt 

(
∂H 

∂M 

)
= 

d 

dt 
( c 2 + ( λ5 − λ1 ) pS ) 

= − ˙ λ1 pS − λ1 p ̇ S + 

˙ λ5 pS + λ5 p ̇ S. (12) 
Using the equations of the system (2) and (5), we obtain 

 = 

d 

dt 

(
∂H 

∂M 

)
= ( kE(λ2 − λ1 ) − dλ1 ) pS 

+ ( A − kSE + b 1 Q − dS ) (λ5 − λ1 ) p + pdSλ5 (13) 

We observe that the control parameter M does not explicitly

ccur in the above expression, so next we calculate the second

erivative with respect to time. 

 = 

d 2 

dt 2 

(
∂H 

∂M 

)
= 

[
k 
(
E 
(

˙ λ2 − ˙ λ1 

)
+ ( λ2 − λ1 ) ̇ E 

)
− d ˙ λ1 

]
pS 

+ ( kE ( λ2 − λ1 ) − dλ1 ) p ̇ S 

+ 

(
A − k 

(
˙ S E + 

˙ E S 
)

+ b 1 ˙ Q − d ̇ S 
)
( λ5 − λ1 ) p 

+ ( A − kSE + b 1 Q − dS ) 
(

˙ λ5 − ˙ λ1 

)
p + pdS ˙ λ5 + pd ̇ S λ5 (14) 

here k = β(1 − ρ1 )(1 − ρ2 ) . 

Using the state and co-state equations of systems (1) and (9) ,

e simplify the Eq. (14) and finally obtain 

 = 

d 2 

dt 2 

(
∂H 

∂M 

)
= [ kE p(λ5 − λ1 ) + dp 2 S(λ5 − λ1 ) 

− p 2 S ( kE(λ5 − λ1 ) − dλ1 ) + (kpSE + dpS)(λ5 − λ1 ) p 

+ (A − kSE + b 1 Q − dS)(λ5 − λ1 ) p − p 2 Sdλ5 ] M(t) 

+ { Ek 2 S(λ1 − λ2 ) + Ekλ2 (b 2 + σ + d + α) 

− (b 2 λ3 + αλ4 + σλ5 ) kE − k 2 E 2 (λ1 − λ2 ) 

− dkλ1 E + k (λ2 − λ1 )[ kSE − (b 2 + σ + d + α) E] } pS 

− (d pSkE + d 2 pS) λ1 + d pSkEλ2 

+ (kE(λ2 − λ1 ) − dλ1 )(A − kSE + b 1 Q − dS) p 

+ [ A − kE(A − kSE + b 1 Q − dS) 

− kS(kSE − b 2 E − σE − dE − αE) 

+ b 1 (b 2 E − (b 1 + c + d) Q ) − d(A − kSE + b 1 Q − dS)] p(λ5 − λ1 )

+ (A − kSE + b 1 Q − d S)(d λ5 − (kE + d) λ1 + kEλ2 ) p + pSd 2 λ5 

+ pdλ5 (A − kSE + b 1 Q − dS) (15)

The above equation can be written in the form 

d 2 

dt 2 

(
∂H 

∂M 

)
= 	1 (t) M(t) + 	2 (t) = 0 

nd then we can solve the singular control as 

 singular (t) = −	2 (t) 

	1 (t) 
, 

rovided 	1 ( t ) � = 0 and a ≤ −	2 (t) 
	1 (t) 

≤ b, where 

	1 (t) = [ kpE(λ5 − λ1 ) + dp 2 S(λ5 − λ1 ) 

− p 2 S ( kE(λ2 − λ1 ) − dλ1 ) + (kpSE + dpS)(λ5 − λ1 ) p 

+ (A − kSE + b 1 Q − dS)(λ5 − λ1 ) p − p 2 Sdλ5 ] 

nd 

	2 ( t ) = 

(
k 2 ES ( λ1 − λ2 ) + Ek λ2 ( b 2 + σ + d + α) 

− ( b 2 λ3 + αλ4 + σλ5 ) kE − k 2 E 2 ( λ1 − λ2 ) − dk λ1 E 

+ k ( λ2 − λ1 ) ( kSE − ( b 2 + d + σ + α) E ) ) pS 

−
(
dpkSE + d 2 pS 

)
λ1 + dpkSE λ2 

+ ( kE ( λ2 − λ1 ) − dλ1 ) ( A − kSE + b 1 Q − dS ) p 

+ [ A − k ( A − kSE + b 1 Q − dS ) E 

− kS ( kSE − b 2 E − σE − dE − αE ) + b 1 ( b 2 E − ( b 1 + c + d ) Q ) 

− d ( A − kSE + b 1 Q − dS ) ] p ( λ5 − λ1 ) 



6 M. Mandal, S. Jana and S.K. Nandi et al. / Chaos, Solitons and Fractals 136 (2020) 109889 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Dynamical behavior around EE. 
+ ( A − kSE + b 1 Q − dS ) ( d λ5 − ( kE + d ) λ1 

+ kE λ2 ) p + pS d 2 λ5 + pd λ5 ( A − kSE + b 1 Q − dS ) . 

Moreover in order to satisfy the Generalized Legendre-Clebsch

Condition for the singular control to be optimal, we require
d 

dM 

d 2 

dt 2 

(
∂H 
∂M 

)
= 	1 (t) to be negative [25] . Therefore we summarize

the control profile on a nontrivial interval in the following way: 

if 
∂H 

∂M 

< 0 , then M 

∗(t) = b, 

if 
∂H 

∂M 

> 0 , then M 

∗(t) = a, 

if 
∂H 

∂M 

= 0 , then M singular (t) = −	2 (t) 

	1 (t) 
. 

Hence the control is optimal provided 	1 ( t ) < 0 and a ≤
−	2 (t) 

	1 (t) 
≤ b. 

5. Numerical simulation 

We study numerical results in two different cases, first for fixed

control and second when the control has been applied optimally.

First, we consider the values of parameters in Table 1 , for numeri-

cal simulations. Since δ is the disease induced mortality rate and d

is the natural death rate, hence δ > d . Using these parameters and

the initial conditions as S(0) = 500 , E(0) = 10 , Q(0) = 5 , I(0) =
1 , R (0) = 0 , we solve numerically our proposed model (1) . 

Fig. 2 verifies the numerical result when R 0 < 1 and in

this case the solutions of the model (1) converge to the DFE,

E (S 0 , 0 , 0 , 0 , R 0 ) = (60 . 68 , 0 , 0 , 189 . 3) and Fig. 3 verifies when
0 

Table 1 

Description and values/ranges of parameters. 

Parameters Description Value/Ranges 

A Total recruitment 50 

β Disease transmission rate [0.5, 2.3] 

ρ1 Portion of S contact with E (0, 1) 

ρ2 Portion of E contact with S (0, 1) 

d Natural death rate 0.2 

b 1 The rate that Q becomes S 0.25 

b 2 The rate that E becomes quarantine 0.8 

α The rate that E becomes I 0.3 

η The rate that I becomes R naturally 0.25 

σ The rate that E becomes R naturally 0.2 

c The rate that Q becomes I 0.12 

δ The mortality rate for I 0.25 

M Policy parameter 0.8 

p Implementation rate of policy 0.78 

Fig. 2. Dynamical behavior around DFE. 

Fig. 4. The transcritical bifurcation diagram depicts the exchange of stability at 

R 0 = 1 . 
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 0 > 1 and the corresponding solutions of the model (1) converge

o the EE, E 1 (S ∗, E ∗, Q 

∗, I ∗, R ∗) = (48 . 16 , 11 . 21 , 15 . 73 , 3 . 84 , 166 . 3) .

hese results are discussed in the Theorem 3.2 and Theorem 3.4.

urther, in the Theorem 3.3, we have shown that the system (1)

ay undergo through a transcritical bifurcation at the threshold

arametric condition R 0 = 1 . Therefore in Fig. 4 , we demonstrate

he scenarios when R 0 = 1 and it has been observed that the

odel (1) possesses a transcritical bifurcation there. 

We now perform the sensitivity analysis to determine the

igher and lower impact of some parameters on the basic repro-

uction number, R 0 and hence impact of such parameters on the

ynamics of the proposed model (1) . To perform the sensitivity

nalysis [22] , we calculate the normalized forward sensitivity in-

ex of R 0 and these indices measures the relative change in a R 0 
ith respect to the relative change in its parameters ( Table 1 ). 

efinition 5.1. The normalized forward sensitivity index of a func-

ion, F ( x 1 , x 2 , ���, x n ), for x i (1 ≤ i ≤ n ), is defined as: �F 
x i 

= 

∂F 
∂x i 

× x i 
F .

To find the sensitivity of R 0 , we consider the parameters

 , β , ρ1 , ρ2 , α, d , p , M , b 2 , σ as R 0 is the functions of these parame-

ers. The sensitivity index of R 0 with respect to the parameter β

s given by �
R 0 
d 

= 

∂R 0 
∂d 

× d 
R 0 

= −d 

(
1 

b 2 + d+ α+ σ + 

1 
d+ pM 

)
. Similarly, we

an find the sensitivity indices of R 0 with respect to the other pa-

ameters. 

Positive index indicates that R 0 is an increasing function of the

orresponding parameter and negative index implies that R 0 is a

ecreasing function of that parameter. For example, as �
R 0 
β

= 1 , it

hows that if β is increased by 10% then the R is also increased by
0 
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Table 2 

Sensitivity index of R 0 against parameters. 

Parameters A β ρ1 ρ2 α d p M b 2 σ

Sensitivity index 1 1 −3.545 −7.50 −0.138 −0.386 −0.757 −0.757 −0.575 −0.144 

Fig. 5. Sensitivity index of R 0 against some parameters. 

Fig. 6. Contour plot of R 0 as a function of β and ρ1 . 
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Fig. 7. Contour plot of R 0 as a function of ρ1 and ρ2 . 

Fig. 8. Variation of population in presence and absence of control strategy. 
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0%. Again, as �
R 0 
d 

= −0 . 409 implies that 10% increment in d will

ecrease R 0 by 4.09%. From Table 2 , we see that the most sensitive

arameter which has positive impact on R 0 are the disease trans-

ission rate β and recruitment rate A, and the parameters ρ1 , ρ2 

roduce more negative impact on R 0 , as compared to the parame-

ers d , p , M , b 2 , σ . We have shown this behavior in Fig. 5 . 

Figs. 6 and 7 represent the contour plot of the basic reproduc-

ion number R 0 with respect to the parameters β vs ρ1 and ρ1 

s ρ2 respectively. It can be noticed from Fig. 6 that for increas-

ng value of β and decreasing value of ρ1 , R 0 increases. Again,

or decreasing values for ρ1 and ρ2 , R 0 increases, which has been

emonstrated in Fig. 7 . 

We know that the numerical value of the basic reproduction

umber R 0 determines the exact nature of secondary infections

ue to the disease. From the Table 1 and Fig. 5–7 ; we claim that

he parameters with negative indices can be increased then the

umerical value of R 0 would be decreased significantly. Also the

arameters namely A and β has positive indices and hence reduc-
ion of these two parameters would ultimately control the disease.

urther, from the sensitivity indecies, we see that the two param-

ters related to isolation namely ρ1 and ρ2 are the most sensitive

arameters and one can control easily these two parameters. Thus

e may conclude from here that the best procedure to control the

isease is to increase the value of isolation. 

Next we present the numerical solution of the formulated opti-

al control problem. To find the numerical solution of the objec-

ive functional (6) subject to the system of differential Eq. (1) , we

se fourth order Runge-kutta method with the help of MATLAB 16

oftware. First, we find the solution of the model (1) by forward

ourth order Runge-Kutta method with an initial size of population.

hen solve the representing adjoint Eq. (9) by backward fourth or-

er Runge-Kutta method by applying the solutions of the system

1) and the transversality conditions (10) . Here, we choose the fol-

owing parameters set: 

 = (C 1 , C 2 , A, d, b 1 , b 2 , c, β, σ, ρ1 , ρ2 , α, p, η, δ) 

= (1 . 2 , 1 , 50 , 0 . 2 , 0 . 25 , 0 . 8 , 0 . 12 , 1 . 5 , 0 . 2 , 0 . 78 , 0 . 92 , 0 . 0714 , 

5 , 0 . 025 , 0 . 25) 

And the corresponding initial guess of population size is

(S(0) , E(0) , Q(0) , I(0) , R (0)) = (500 , 10 , 5 , 1 , 0) . Fig. 8 depicts

he solutions of all state variables in the presence and absence

f control parameter. It is noticed that in presence of control, ex-

osed, quarantine and infected population increases slower than
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Table 3 

Number of active, recovered, death and confirmed classes of COVID 19 cases in the states of Maharashtra, Delhi and Tamil Nadu. 

Date States of India 

Maharashtra Delhi Tamil Nadu 

March/April Active Recov Death Conf Active Recov Death Conf Active Recov Death Conf 

02 0 0 0 0 2 0 0 2 0 0 0 0 

03 0 0 0 0 2 0 0 2 0 0 0 0 

04 0 0 0 0 3 0 0 3 0 0 0 0 

05 0 0 0 0 3 0 0 3 0 0 0 0 

06 0 0 0 0 4 0 0 4 0 0 0 0 

07 0 0 0 0 4 0 0 4 1 0 0 1 

08 0 0 0 0 4 0 0 4 1 0 0 1 

09 2 0 0 2 4 0 0 4 1 0 0 1 

10 5 0 0 5 5 0 0 5 1 0 0 1 

11 11 0 0 11 6 0 0 6 1 0 0 1 

12 11 0 0 11 8 0 0 8 1 0 0 1 

13 19 0 0 19 8 0 0 8 1 0 0 1 

14 31 0 0 31 9 0 0 9 1 0 0 1 

15 33 0 0 33 9 0 0 9 1 0 0 1 

16 39 0 0 39 9 0 0 9 1 0 0 1 

17 41 0 0 41 10 0 0 10 1 0 0 1 

18 45 0 0 45 12 0 0 12 2 0 0 2 

19 48 0 0 48 14 0 0 14 3 0 0 3 

20 52 0 0 52 14 0 0 14 3 0 0 3 

21 64 0 0 64 18 0 0 18 6 0 0 6 

22 74 0 0 74 26 0 0 26 7 0 0 7 

23 95 0 0 95 29 0 0 29 8 0 0 8 

24 104 0 0 104 30 0 0 30 14 0 0 14 

25 124 1 3 128 35 0 0 35 21 0 0 21 

26 120 6 3 129 38 0 0 38 27 0 0 27 

27 111 15 4 130 38 0 0 38 36 0 0 36 

28 150 25 5 180 38 0 0 38 39 2 0 41 

29 155 25 6 186 47 0 0 47 47 3 0 50 

30 165 25 8 198 95 0 0 95 62 4 0 66 

31 168 39 9 216 95 0 0 95 117 6 0 123 

01 254 39 9 302 144 6 2 152 227 6 1 234 

02 280 42 13 335 207 8 4 219 227 6 1 234 

03 277 42 16 335 207 8 4 219 302 6 1 309 

04 424 42 24 490 424 15 6 445 403 6 2 411 

05 424 42 24 490 478 18 7 503 476 6 3 485 

06 647 56 45 748 497 19 7 523 558 8 5 571 

07 764 56 48 868 548 21 7 576 608 8 5 621 

08 875 79 64 1018 546 21 9 576 664 19 7 690 

09 946 117 72 1135 639 21 9 669 709 21 8 738 

10 1142 125 97 1364 660 25 13 698 805 21 8 834 

11 1276 188 110 1574 684 25 14 723 859 44 8 911 

12 1426 208 127 1761 1025 25 19 1069 915 44 10 969 

13 1619 217 149 1985 1103 27 24 1154 1014 50 11 1075 

14 1948 229 160 2337 1452 30 28 1510 1104 58 11 1173 

15 2250 259 178 2687 1501 30 30 1561 1111 81 12 1204 

16 2437 295 187 2919 1504 42 32 1578 1110 118 14 1242 

17 2711 300 194 3205 1551 51 38 1640 1072 180 15 1267 

18 2791 331 201 3323 1593 72 42 1707 1025 283 15 1323 

19 3075 365 211 3651 1779 72 42 1893 992 365 15 1372 

20 3473 507 223 4203 1668 290 45 2003 1051 411 15 1477 

21 3865 572 232 4669 1603 431 47 2081 1046 457 17 1520 

22 4248 722 251 5221 1498 611 47 2156 943 635 18 1596 

23 4594 789 269 5652 1476 724 48 2248 949 642 18 1629 

24 5307 840 283 6430 1518 808 50 2376 911 752 20 1683 

25 5559 957 301 6817 1604 857 53 2514 867 866 22 1755 

26 6229 1076 323 8068 1702 869 54 2625 838 960 23 1821 

27 6538 1188 342 8068 1987 877 54 2918 841 1020 24 1885 

Here, in table 3 the phrases ‘Recov’ and ‘Conf’ represents recovered and confirmed infected class respectively. 
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the absence of the control. Similarly, in presence of control, sus-

ceptible population decreases faster than the absence of the con-

trol and recovered population increases faster than the absence of

the control. These real phenomena justify our proposed model. In

Fig. 9 , we plot the evolution of the variations of adjoint or costate

variables and the control parameter are depicted in the Fig. 10 .

Clearly the optimal control follows a combination of singular and

bang-bang control and this type of representation of an optimal

control is a very rare phenomenon in theoretical epidemiology. 
. Application of model to forecast COVID-19 at some states in 

ndia 

In this portion, we present an example of a real case where

e can apply the proposed model. The World Health Organization

WHO) first confirmed an incident of COVID-19 on 12th January

020 that was the induce respiratory illness in a cluster of peo-

le in Wuhan, Hubei Province, China, and this case was actually

eported to the WHO on 31st December 2019. India, the second
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Fig. 9. Variation of the adjoint variables when control applied optimally. 

Fig. 10. Variation of the control strategy of control parameter M . 
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Table 4 

Values of parameters in the states of Maharashtra, Delhi and Tamil Nadu. 

Parameter Value Maharashtra Delhi Tamil Nadu References 

A 28112 2144 14205 [34] 

d 0.0058 0.0036 0.0071 [34] 

δ 0.0685 0.0232 0.0122 [10,11,14,36] 

α 1/5.2 1/4 1/5.4 [10,11,14,36] 

η 1/14 1/14 1/14 [32,36] [17] 

ρ1 0.64 0.72 0.62 Estimated 

ρ2 0.78 0.82 0.75 Estimated 

b 1 0.07122 0.045185 0.062856 Estimated 

b 2 1.11013 0.78529 0.157832 Estimated 

σ 0.119732 0.14029 0.36186 Estimated 

p 0.96657 0.923769 0.90076 Estimated 

M 0.916499 0.925161 0.91462 Estimated 

Table 5 

Initial values of population in the states of Maharashtra, Delhi and Tamil 

Nadu. 

Initial Values Maharashtra Delhi Tamil Nadu References 

S(0) 1374333 134555 947030 [10,11,14,36] 

E(0) 312 214 346 Estimated 

Q(0) 945 845 710 Estimated 

I(0) 0 2 0 [10,11,14,36] 

R(0) 0 0 0 [10,11,14,36] 

Fig. 11. Active COVID-19 cases in Maharashtra. 
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ost populated country, has also been affected severely due to

he global pandemic COVID-19. In this paper, we analyze the ef-

ect of COVID-19 cases in three states in three different parts of

ndia. These states are the Western state Maharashtra (where the

ommercial capital of India, Mumbai situated), the northern state

elhi (where the capital of India, New Delhi is located), and the

outhern state Tamil Nadu (where another highly populated mega-

ity, Chennai is situated) and the some of total populations of these

hree states crossing two hundred millions. We apply the model

ystem (1) to study the pandemic situation due to COVID-19 in

hese three states of India from 2nd March, 2020 to 27th April,

020 and predict the future behavior of the disease in a short term

asis. Although the first case of COVID-19 in India was confirmed

n the state Kerala on 30th January 2020, the first cases of COVID-

9 were reported in the state of Delhi, Tamil Nadu, and Maharash-

ra respectively on 2nd, 7th, and 9th March 2020. The active, re-

overed, death and confirmed COVID-19 cases of these three states

re collected from the official websites of the official updates of

oronavirus, COVID-19 in India, Government of India [36] , Govern-

ent of Delhi [11] , Government of Maharashtra [10] and Govern-
ent of Tamil Nadu [14] and presented during this period in the

able 3 . 

We fit the proposed model (1) to the daily active infected and

onfirmed (cumulative) infected COVID-19 cases in those three

tates of India using the set of parameters as given in Table 4 and

he initial size of the population from the Table 5 . To fit these real

ata, we use the software Mathematica and then predict the be-

avior of COVID-19 for those three states on a short term basis. In

igs. 11 –Fig. 13 , we respectively present the active COVID-19 cases

n Maharashtra, Delhi, and Tamil Nadu for 91 days starting from

nd March, 2020, till the 31st May 2020. Also, in Figs. 14 , 15 and

n Fig. 16 , we present the cumulative confirmed (i.e., the sum of

ctive cases, recovered and death) COVID-19 cases of Maharashtra,

elhi, and Tamil Nadu, respectively, for the same period. 

. Discussion and conclusion 

After world war II, the globe has never undergone like the

resent scenarios that arrived due to the pandemic COVID-19.

tarting from Wuhan city in December 2019, the virus SARS-CoV-

 has spread throughout as many as 210 countries and territories

nd continues to increase its pandemic nature. In the absence of

roper vaccination and treatment of COVID-19, one would rely on
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Fig. 12. Active COVID-19 cases in Delhi 

Fig. 13. Active COVID-19 cases in Tamil Nadu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Confirmed COVID-19 cases in Maharashtra. 

Fig. 15. Confirmed COVID-19 cases in Delhi. 
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a  
qualitative control of the disease rather than complete eradication.

Since these types of situations are unknown to present society, in

these circumstances, various governments have taken some poli-

cies to control the destructive nature of the disease as much as

possible. To study the dynamics of the disease, in this article, we

have proposed and analyzed a classical SEIR type mathematical

model to incorporate the COVID-19 scenarios in the system (1) .

A detailed analysis shows that the proposed system posses two

equilibria, namely one disease-free and one endemic whose ex-

istence and asymptotic stability criteria depend on the numerical

value of basic reproduction number R 0 . We have also established

that the proposed system (1) undergoes a transcritical bifurcation

at the threshold R 0 = 1 . To study the impact of the government

control measures to prevent the extensive transmission of COVID-

19, we have introduced a control parameter M . Further, to reduce

the infected individuals as well as to minimize the cost of im-

plementing government control measures, an objective functional

has been formed and solved using Pontryagin’s maximum princi-

ple. The optimal control follows a combination of bang-bang and

singular control during its application. We also have discussed the

sensitivity index of the threshold parameter R 0 and found the most

sensitive parameter, which has a positive impact on R 0 is the dis-

ease transmission rate. 

Next, we consider three cases of populations, namely (i) active

cases of COVID-19, (ii) confirmed cases of COVID-19, and (iii) re-

covered cases of COVID-19 in three states of India, namely, western

state Maharashtra, northern state Delhi, and southern state Tamil

Nadu where there are more than two hundred people residing. In

Table 3 , we provide the data of COVID-19 confirmed, active, recov-

ered, and death cases of these three states starting from 2nd March
020, till 27th April 2020. In Tables 4 and 5 , we estimate the para-

etric values associated with the model system (1) . Finally, using

he software Mathematica, we try to fit our model (1) to estimate

he nature of COVID-19 in those three states of India. In Figs. 11–

3 , we present the active COVID-19 cases in Maharashtra, Delhi,

nd Tamil Nadu, respectively, for 91 days starting from 2nd March

020, till the 31st of May 2020. In particular, we use the exist-

ng data for the first 57 days (till 27th April 2020) collecting from

he websites of the Government of India and WHO to forecast the

robable active COVID-19 cases in those three states for the rest

f 34 days. It should be noted that here we can forecast the na-

ure of the COVID-19 for the short term only as the Governmental

olicy would change in time to time resulting in the correspond-

ng changes in the associated parameters of the proposed model

ystem. From those three figures, we can claim that on 31st May

020, the active cases of the three states Maharashtra, Delhi, and

amil Nadu, will be around 46183, 3344, and 411 respectively. Sim-

larly, in Figs. 14, 15 and in Fig. 16 , we respectively present the cu-

ulative confirmed (i.e., the sum of active, recovered and death)

OVID-19 cases of Maharashtra, Delhi, and Tamil Nadu starting

rom 2nd March 2020, till the 31st May 2020. Further, using the

xisting data for the first 57 days (till 27th April 2020), the cases

or the next 34 days has been predicted. It has been forecasting

rom those three figures that till 31st May 2020, the cumulative

onfirmed instances of those three states Maharashtra, Delhi, and

amil Nadu will be around 83958, 19667, and 5133 respectively.

oreover, from above figures ( Fig. 11 to 16 ), we can estimate the

umber of active cases and number of cumulative confirmed cases

f those three states at any day of May, 2020. 

The primary finding of this article is that we have derived

 mathematical model that can be used to study the qualitative
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Fig. 16. Confirmed COVID-19 cases in Tamil Nadu. 
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ynamics of COVID-19. The basic reproduction number and its sen-

itivity analysis would determine the controlling procedure of the

isease. Also, we have incorporated the governmental policy in

ur mathematical model and proposed a linear objective functional

onsidering that governmental policy as the time-dependent con-

rol parameter. On the other hand, it should be noted that the es-

imated values of COVID-19 in the three different states of India in

hree different parts are forecasted using existing parametric space

nly. In the case of the first two states, Maharashtra and Delhi we

ee that the graph shows an increasing trend whereas for the state

amil Nadu, the predicted data shows that the disease can be con-

rolled with the existing parametric space. The main two burdens

ehind the control of COVID-19 are (i) the unconsciousness of the

eople about the disease and (ii) the high population density ex-

osed the infection when the common people are out for their es-

ential commodities. Moreover, the weakness of forecasting cumu-

ative COVID-19 cases in the three states of India is that here the

orecast is done on totally some existing parametric conditions. But

uman behaviour is the most uncertain phenomena. Hence, if the

orresponding parametric space has been altered then there may

e some changes in the graphs of COVID-19 cases. Therefore, in

his article, we are targeting to forecast the COVID-19 cases on a

hort term basis and henceforth there would be very little chance

o change in corresponding parametric space. But the framework of

he current model gives some important insights into the dynam-

cs of COVID-19 spread and control. Further, our simulation works

uggest that both the quarantine and governmental intervention

trategies like lockdown, media coverage on social distancing and

ublic hygiene can play an important role in diminishing COVID-

9 transmission. However, the successes of these strategies mainly

ely on the proper implementation of the process. In our future

ork, we need to extend our model by incorporating some essen-

ial biological as well as epidemiological factors. To be given some

xamples, we may mention the acquired immunity in humans, dif-

erential susceptibility and infectivity of humans to COVID-19 in-

ection, and spatial heterogeneity. 
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